\(\int \frac {x^5 (c+d x+e x^2)}{(a+b x^3)^{3/2}} \, dx\) [437]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [A] (verified)
   Fricas [C] (verification not implemented)
   Sympy [A] (verification not implemented)
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 25, antiderivative size = 594 \[ \int \frac {x^5 \left (c+d x+e x^2\right )}{\left (a+b x^3\right )^{3/2}} \, dx=\frac {2 x \left (a d+a e x-b c x^2\right )}{3 b^2 \sqrt {a+b x^3}}+\frac {4 c \sqrt {a+b x^3}}{3 b^2}+\frac {2 d x \sqrt {a+b x^3}}{5 b^2}+\frac {2 e x^2 \sqrt {a+b x^3}}{7 b^2}-\frac {80 a e \sqrt {a+b x^3}}{21 b^{8/3} \left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )}+\frac {40 \sqrt {2-\sqrt {3}} a^{4/3} e \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} E\left (\arcsin \left (\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x}{\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x}\right )|-7-4 \sqrt {3}\right )}{7\ 3^{3/4} b^{8/3} \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \sqrt {a+b x^3}}-\frac {16 \sqrt {2+\sqrt {3}} a \left (14 \sqrt [3]{b} d-25 \left (1-\sqrt {3}\right ) \sqrt [3]{a} e\right ) \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x}{\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x}\right ),-7-4 \sqrt {3}\right )}{105 \sqrt [4]{3} b^{8/3} \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \sqrt {a+b x^3}} \]

[Out]

2/3*x*(-b*c*x^2+a*e*x+a*d)/b^2/(b*x^3+a)^(1/2)+4/3*c*(b*x^3+a)^(1/2)/b^2+2/5*d*x*(b*x^3+a)^(1/2)/b^2+2/7*e*x^2
*(b*x^3+a)^(1/2)/b^2-80/21*a*e*(b*x^3+a)^(1/2)/b^(8/3)/(b^(1/3)*x+a^(1/3)*(1+3^(1/2)))+40/21*a^(4/3)*e*(a^(1/3
)+b^(1/3)*x)*EllipticE((b^(1/3)*x+a^(1/3)*(1-3^(1/2)))/(b^(1/3)*x+a^(1/3)*(1+3^(1/2))),I*3^(1/2)+2*I)*(1/2*6^(
1/2)-1/2*2^(1/2))*((a^(2/3)-a^(1/3)*b^(1/3)*x+b^(2/3)*x^2)/(b^(1/3)*x+a^(1/3)*(1+3^(1/2)))^2)^(1/2)*3^(1/4)/b^
(8/3)/(b*x^3+a)^(1/2)/(a^(1/3)*(a^(1/3)+b^(1/3)*x)/(b^(1/3)*x+a^(1/3)*(1+3^(1/2)))^2)^(1/2)-16/315*a*(a^(1/3)+
b^(1/3)*x)*EllipticF((b^(1/3)*x+a^(1/3)*(1-3^(1/2)))/(b^(1/3)*x+a^(1/3)*(1+3^(1/2))),I*3^(1/2)+2*I)*(14*b^(1/3
)*d-25*a^(1/3)*e*(1-3^(1/2)))*(1/2*6^(1/2)+1/2*2^(1/2))*((a^(2/3)-a^(1/3)*b^(1/3)*x+b^(2/3)*x^2)/(b^(1/3)*x+a^
(1/3)*(1+3^(1/2)))^2)^(1/2)*3^(3/4)/b^(8/3)/(b*x^3+a)^(1/2)/(a^(1/3)*(a^(1/3)+b^(1/3)*x)/(b^(1/3)*x+a^(1/3)*(1
+3^(1/2)))^2)^(1/2)

Rubi [A] (verified)

Time = 0.46 (sec) , antiderivative size = 594, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.280, Rules used = {1842, 1902, 1900, 267, 1892, 224, 1891} \[ \int \frac {x^5 \left (c+d x+e x^2\right )}{\left (a+b x^3\right )^{3/2}} \, dx=-\frac {16 \sqrt {2+\sqrt {3}} a \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \left (14 \sqrt [3]{b} d-25 \left (1-\sqrt {3}\right ) \sqrt [3]{a} e\right ) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt [3]{b} x+\left (1-\sqrt {3}\right ) \sqrt [3]{a}}{\sqrt [3]{b} x+\left (1+\sqrt {3}\right ) \sqrt [3]{a}}\right ),-7-4 \sqrt {3}\right )}{105 \sqrt [4]{3} b^{8/3} \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \sqrt {a+b x^3}}+\frac {40 \sqrt {2-\sqrt {3}} a^{4/3} e \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} E\left (\arcsin \left (\frac {\sqrt [3]{b} x+\left (1-\sqrt {3}\right ) \sqrt [3]{a}}{\sqrt [3]{b} x+\left (1+\sqrt {3}\right ) \sqrt [3]{a}}\right )|-7-4 \sqrt {3}\right )}{7\ 3^{3/4} b^{8/3} \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \sqrt {a+b x^3}}-\frac {80 a e \sqrt {a+b x^3}}{21 b^{8/3} \left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )}+\frac {2 x \left (a d+a e x-b c x^2\right )}{3 b^2 \sqrt {a+b x^3}}+\frac {4 c \sqrt {a+b x^3}}{3 b^2}+\frac {2 d x \sqrt {a+b x^3}}{5 b^2}+\frac {2 e x^2 \sqrt {a+b x^3}}{7 b^2} \]

[In]

Int[(x^5*(c + d*x + e*x^2))/(a + b*x^3)^(3/2),x]

[Out]

(2*x*(a*d + a*e*x - b*c*x^2))/(3*b^2*Sqrt[a + b*x^3]) + (4*c*Sqrt[a + b*x^3])/(3*b^2) + (2*d*x*Sqrt[a + b*x^3]
)/(5*b^2) + (2*e*x^2*Sqrt[a + b*x^3])/(7*b^2) - (80*a*e*Sqrt[a + b*x^3])/(21*b^(8/3)*((1 + Sqrt[3])*a^(1/3) +
b^(1/3)*x)) + (40*Sqrt[2 - Sqrt[3]]*a^(4/3)*e*(a^(1/3) + b^(1/3)*x)*Sqrt[(a^(2/3) - a^(1/3)*b^(1/3)*x + b^(2/3
)*x^2)/((1 + Sqrt[3])*a^(1/3) + b^(1/3)*x)^2]*EllipticE[ArcSin[((1 - Sqrt[3])*a^(1/3) + b^(1/3)*x)/((1 + Sqrt[
3])*a^(1/3) + b^(1/3)*x)], -7 - 4*Sqrt[3]])/(7*3^(3/4)*b^(8/3)*Sqrt[(a^(1/3)*(a^(1/3) + b^(1/3)*x))/((1 + Sqrt
[3])*a^(1/3) + b^(1/3)*x)^2]*Sqrt[a + b*x^3]) - (16*Sqrt[2 + Sqrt[3]]*a*(14*b^(1/3)*d - 25*(1 - Sqrt[3])*a^(1/
3)*e)*(a^(1/3) + b^(1/3)*x)*Sqrt[(a^(2/3) - a^(1/3)*b^(1/3)*x + b^(2/3)*x^2)/((1 + Sqrt[3])*a^(1/3) + b^(1/3)*
x)^2]*EllipticF[ArcSin[((1 - Sqrt[3])*a^(1/3) + b^(1/3)*x)/((1 + Sqrt[3])*a^(1/3) + b^(1/3)*x)], -7 - 4*Sqrt[3
]])/(105*3^(1/4)*b^(8/3)*Sqrt[(a^(1/3)*(a^(1/3) + b^(1/3)*x))/((1 + Sqrt[3])*a^(1/3) + b^(1/3)*x)^2]*Sqrt[a +
b*x^3])

Rule 224

Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Simp[2*Sqrt
[2 + Sqrt[3]]*(s + r*x)*(Sqrt[(s^2 - r*s*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]/(3^(1/4)*r*Sqrt[a + b*x^3]*Sq
rt[s*((s + r*x)/((1 + Sqrt[3])*s + r*x)^2)]))*EllipticF[ArcSin[((1 - Sqrt[3])*s + r*x)/((1 + Sqrt[3])*s + r*x)
], -7 - 4*Sqrt[3]], x]] /; FreeQ[{a, b}, x] && PosQ[a]

Rule 267

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(a + b*x^n)^(p + 1)/(b*n*(p + 1)), x] /; FreeQ
[{a, b, m, n, p}, x] && EqQ[m, n - 1] && NeQ[p, -1]

Rule 1842

Int[(Pq_)*(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> With[{q = m + Expon[Pq, x]}, Module[{Q = Pol
ynomialQuotient[b^(Floor[(q - 1)/n] + 1)*x^m*Pq, a + b*x^n, x], R = PolynomialRemainder[b^(Floor[(q - 1)/n] +
1)*x^m*Pq, a + b*x^n, x]}, Dist[1/(a*n*(p + 1)*b^(Floor[(q - 1)/n] + 1)), Int[(a + b*x^n)^(p + 1)*ExpandToSum[
a*n*(p + 1)*Q + n*(p + 1)*R + D[x*R, x], x], x], x] + Simp[(-x)*R*((a + b*x^n)^(p + 1)/(a*n*(p + 1)*b^(Floor[(
q - 1)/n] + 1))), x]] /; GeQ[q, n]] /; FreeQ[{a, b}, x] && PolyQ[Pq, x] && IGtQ[n, 0] && LtQ[p, -1] && IGtQ[m,
 0]

Rule 1891

Int[((c_) + (d_.)*(x_))/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Simplify[(1 - Sqrt[3])*(d/c)]]
, s = Denom[Simplify[(1 - Sqrt[3])*(d/c)]]}, Simp[2*d*s^3*(Sqrt[a + b*x^3]/(a*r^2*((1 + Sqrt[3])*s + r*x))), x
] - Simp[3^(1/4)*Sqrt[2 - Sqrt[3]]*d*s*(s + r*x)*(Sqrt[(s^2 - r*s*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]/(r^2
*Sqrt[a + b*x^3]*Sqrt[s*((s + r*x)/((1 + Sqrt[3])*s + r*x)^2)]))*EllipticE[ArcSin[((1 - Sqrt[3])*s + r*x)/((1
+ Sqrt[3])*s + r*x)], -7 - 4*Sqrt[3]], x]] /; FreeQ[{a, b, c, d}, x] && PosQ[a] && EqQ[b*c^3 - 2*(5 - 3*Sqrt[3
])*a*d^3, 0]

Rule 1892

Int[((c_) + (d_.)*(x_))/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a,
 3]]}, Dist[(c*r - (1 - Sqrt[3])*d*s)/r, Int[1/Sqrt[a + b*x^3], x], x] + Dist[d/r, Int[((1 - Sqrt[3])*s + r*x)
/Sqrt[a + b*x^3], x], x]] /; FreeQ[{a, b, c, d}, x] && PosQ[a] && NeQ[b*c^3 - 2*(5 - 3*Sqrt[3])*a*d^3, 0]

Rule 1900

Int[(Pq_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[Coeff[Pq, x, n - 1], Int[x^(n - 1)*(a + b*x^n)^p, x
], x] + Int[ExpandToSum[Pq - Coeff[Pq, x, n - 1]*x^(n - 1), x]*(a + b*x^n)^p, x] /; FreeQ[{a, b, p}, x] && Pol
yQ[Pq, x] && IGtQ[n, 0] && Expon[Pq, x] == n - 1

Rule 1902

Int[(Pq_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{q = Expon[Pq, x]}, With[{Pqq = Coeff[Pq, x, q]}, D
ist[1/(b*(q + n*p + 1)), Int[ExpandToSum[b*(q + n*p + 1)*(Pq - Pqq*x^q) - a*Pqq*(q - n + 1)*x^(q - n), x]*(a +
 b*x^n)^p, x], x] + Simp[Pqq*x^(q - n + 1)*((a + b*x^n)^(p + 1)/(b*(q + n*p + 1))), x]] /; NeQ[q + n*p + 1, 0]
 && q - n >= 0 && (IntegerQ[2*p] || IntegerQ[p + (q + 1)/(2*n)])] /; FreeQ[{a, b, p}, x] && PolyQ[Pq, x] && IG
tQ[n, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {2 x \left (a d+a e x-b c x^2\right )}{3 b^2 \sqrt {a+b x^3}}-\frac {2 \int \frac {a^2 b d+2 a^2 b e x-3 a b^2 c x^2-\frac {3}{2} a b^2 d x^3-\frac {3}{2} a b^2 e x^4}{\sqrt {a+b x^3}} \, dx}{3 a b^3} \\ & = \frac {2 x \left (a d+a e x-b c x^2\right )}{3 b^2 \sqrt {a+b x^3}}+\frac {2 e x^2 \sqrt {a+b x^3}}{7 b^2}-\frac {4 \int \frac {\frac {7}{2} a^2 b^2 d+10 a^2 b^2 e x-\frac {21}{2} a b^3 c x^2-\frac {21}{4} a b^3 d x^3}{\sqrt {a+b x^3}} \, dx}{21 a b^4} \\ & = \frac {2 x \left (a d+a e x-b c x^2\right )}{3 b^2 \sqrt {a+b x^3}}+\frac {2 d x \sqrt {a+b x^3}}{5 b^2}+\frac {2 e x^2 \sqrt {a+b x^3}}{7 b^2}-\frac {8 \int \frac {14 a^2 b^3 d+25 a^2 b^3 e x-\frac {105}{4} a b^4 c x^2}{\sqrt {a+b x^3}} \, dx}{105 a b^5} \\ & = \frac {2 x \left (a d+a e x-b c x^2\right )}{3 b^2 \sqrt {a+b x^3}}+\frac {2 d x \sqrt {a+b x^3}}{5 b^2}+\frac {2 e x^2 \sqrt {a+b x^3}}{7 b^2}-\frac {8 \int \frac {14 a^2 b^3 d+25 a^2 b^3 e x}{\sqrt {a+b x^3}} \, dx}{105 a b^5}+\frac {(2 c) \int \frac {x^2}{\sqrt {a+b x^3}} \, dx}{b} \\ & = \frac {2 x \left (a d+a e x-b c x^2\right )}{3 b^2 \sqrt {a+b x^3}}+\frac {4 c \sqrt {a+b x^3}}{3 b^2}+\frac {2 d x \sqrt {a+b x^3}}{5 b^2}+\frac {2 e x^2 \sqrt {a+b x^3}}{7 b^2}-\frac {(40 a e) \int \frac {\left (1-\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x}{\sqrt {a+b x^3}} \, dx}{21 b^{7/3}}-\frac {\left (8 a \left (14 \sqrt [3]{b} d-25 \left (1-\sqrt {3}\right ) \sqrt [3]{a} e\right )\right ) \int \frac {1}{\sqrt {a+b x^3}} \, dx}{105 b^{7/3}} \\ & = \frac {2 x \left (a d+a e x-b c x^2\right )}{3 b^2 \sqrt {a+b x^3}}+\frac {4 c \sqrt {a+b x^3}}{3 b^2}+\frac {2 d x \sqrt {a+b x^3}}{5 b^2}+\frac {2 e x^2 \sqrt {a+b x^3}}{7 b^2}-\frac {80 a e \sqrt {a+b x^3}}{21 b^{8/3} \left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )}+\frac {40 \sqrt {2-\sqrt {3}} a^{4/3} e \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} E\left (\sin ^{-1}\left (\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x}{\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x}\right )|-7-4 \sqrt {3}\right )}{7\ 3^{3/4} b^{8/3} \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \sqrt {a+b x^3}}-\frac {16 \sqrt {2+\sqrt {3}} a \left (14 \sqrt [3]{b} d-25 \left (1-\sqrt {3}\right ) \sqrt [3]{a} e\right ) \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} F\left (\sin ^{-1}\left (\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x}{\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x}\right )|-7-4 \sqrt {3}\right )}{105 \sqrt [4]{3} b^{8/3} \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \sqrt {a+b x^3}} \\ \end{align*}

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 10.11 (sec) , antiderivative size = 134, normalized size of antiderivative = 0.23 \[ \int \frac {x^5 \left (c+d x+e x^2\right )}{\left (a+b x^3\right )^{3/2}} \, dx=\frac {2 \left (70 a c+56 a d x-150 a e x^2+35 b c x^3+21 b d x^4+15 b e x^5-56 a d x \sqrt {1+\frac {b x^3}{a}} \operatorname {Hypergeometric2F1}\left (\frac {1}{3},\frac {1}{2},\frac {4}{3},-\frac {b x^3}{a}\right )+150 a e x^2 \sqrt {1+\frac {b x^3}{a}} \operatorname {Hypergeometric2F1}\left (\frac {2}{3},\frac {3}{2},\frac {5}{3},-\frac {b x^3}{a}\right )\right )}{105 b^2 \sqrt {a+b x^3}} \]

[In]

Integrate[(x^5*(c + d*x + e*x^2))/(a + b*x^3)^(3/2),x]

[Out]

(2*(70*a*c + 56*a*d*x - 150*a*e*x^2 + 35*b*c*x^3 + 21*b*d*x^4 + 15*b*e*x^5 - 56*a*d*x*Sqrt[1 + (b*x^3)/a]*Hype
rgeometric2F1[1/3, 1/2, 4/3, -((b*x^3)/a)] + 150*a*e*x^2*Sqrt[1 + (b*x^3)/a]*Hypergeometric2F1[2/3, 3/2, 5/3,
-((b*x^3)/a)]))/(105*b^2*Sqrt[a + b*x^3])

Maple [A] (verified)

Time = 2.05 (sec) , antiderivative size = 813, normalized size of antiderivative = 1.37

method result size
elliptic \(\text {Expression too large to display}\) \(813\)
default \(\text {Expression too large to display}\) \(836\)
risch \(\text {Expression too large to display}\) \(1587\)

[In]

int(x^5*(e*x^2+d*x+c)/(b*x^3+a)^(3/2),x,method=_RETURNVERBOSE)

[Out]

-2*b*(-1/3/b^3*a*e*x^2-1/3*a*d/b^3*x-1/3*a*c/b^3)/((x^3+a/b)*b)^(1/2)+2/7*e*x^2*(b*x^3+a)^(1/2)/b^2+2/5*d*x*(b
*x^3+a)^(1/2)/b^2+2/3*c*(b*x^3+a)^(1/2)/b^2+32/45*I*a*d/b^3*3^(1/2)*(-a*b^2)^(1/3)*(I*(x+1/2/b*(-a*b^2)^(1/3)-
1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))*3^(1/2)*b/(-a*b^2)^(1/3))^(1/2)*((x-1/b*(-a*b^2)^(1/3))/(-3/2/b*(-a*b^2)^(1/3)
+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3)))^(1/2)*(-I*(x+1/2/b*(-a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))*3^(1/2)*b/
(-a*b^2)^(1/3))^(1/2)/(b*x^3+a)^(1/2)*EllipticF(1/3*3^(1/2)*(I*(x+1/2/b*(-a*b^2)^(1/3)-1/2*I*3^(1/2)/b*(-a*b^2
)^(1/3))*3^(1/2)*b/(-a*b^2)^(1/3))^(1/2),(I*3^(1/2)/b*(-a*b^2)^(1/3)/(-3/2/b*(-a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(-
a*b^2)^(1/3)))^(1/2))+80/63*I*a*e/b^3*3^(1/2)*(-a*b^2)^(1/3)*(I*(x+1/2/b*(-a*b^2)^(1/3)-1/2*I*3^(1/2)/b*(-a*b^
2)^(1/3))*3^(1/2)*b/(-a*b^2)^(1/3))^(1/2)*((x-1/b*(-a*b^2)^(1/3))/(-3/2/b*(-a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b
^2)^(1/3)))^(1/2)*(-I*(x+1/2/b*(-a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))*3^(1/2)*b/(-a*b^2)^(1/3))^(1/2)/
(b*x^3+a)^(1/2)*((-3/2/b*(-a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))*EllipticE(1/3*3^(1/2)*(I*(x+1/2/b*(-a*
b^2)^(1/3)-1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))*3^(1/2)*b/(-a*b^2)^(1/3))^(1/2),(I*3^(1/2)/b*(-a*b^2)^(1/3)/(-3/2/b
*(-a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3)))^(1/2))+1/b*(-a*b^2)^(1/3)*EllipticF(1/3*3^(1/2)*(I*(x+1/2/b*(
-a*b^2)^(1/3)-1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))*3^(1/2)*b/(-a*b^2)^(1/3))^(1/2),(I*3^(1/2)/b*(-a*b^2)^(1/3)/(-3/
2/b*(-a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3)))^(1/2)))

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.10 (sec) , antiderivative size = 138, normalized size of antiderivative = 0.23 \[ \int \frac {x^5 \left (c+d x+e x^2\right )}{\left (a+b x^3\right )^{3/2}} \, dx=-\frac {2 \, {\left (112 \, {\left (a b d x^{3} + a^{2} d\right )} \sqrt {b} {\rm weierstrassPInverse}\left (0, -\frac {4 \, a}{b}, x\right ) - 200 \, {\left (a b e x^{3} + a^{2} e\right )} \sqrt {b} {\rm weierstrassZeta}\left (0, -\frac {4 \, a}{b}, {\rm weierstrassPInverse}\left (0, -\frac {4 \, a}{b}, x\right )\right ) - {\left (15 \, b^{2} e x^{5} + 21 \, b^{2} d x^{4} + 35 \, b^{2} c x^{3} + 50 \, a b e x^{2} + 56 \, a b d x + 70 \, a b c\right )} \sqrt {b x^{3} + a}\right )}}{105 \, {\left (b^{4} x^{3} + a b^{3}\right )}} \]

[In]

integrate(x^5*(e*x^2+d*x+c)/(b*x^3+a)^(3/2),x, algorithm="fricas")

[Out]

-2/105*(112*(a*b*d*x^3 + a^2*d)*sqrt(b)*weierstrassPInverse(0, -4*a/b, x) - 200*(a*b*e*x^3 + a^2*e)*sqrt(b)*we
ierstrassZeta(0, -4*a/b, weierstrassPInverse(0, -4*a/b, x)) - (15*b^2*e*x^5 + 21*b^2*d*x^4 + 35*b^2*c*x^3 + 50
*a*b*e*x^2 + 56*a*b*d*x + 70*a*b*c)*sqrt(b*x^3 + a))/(b^4*x^3 + a*b^3)

Sympy [A] (verification not implemented)

Time = 6.88 (sec) , antiderivative size = 129, normalized size of antiderivative = 0.22 \[ \int \frac {x^5 \left (c+d x+e x^2\right )}{\left (a+b x^3\right )^{3/2}} \, dx=c \left (\begin {cases} \frac {4 a}{3 b^{2} \sqrt {a + b x^{3}}} + \frac {2 x^{3}}{3 b \sqrt {a + b x^{3}}} & \text {for}\: b \neq 0 \\\frac {x^{6}}{6 a^{\frac {3}{2}}} & \text {otherwise} \end {cases}\right ) + \frac {d x^{7} \Gamma \left (\frac {7}{3}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {3}{2}, \frac {7}{3} \\ \frac {10}{3} \end {matrix}\middle | {\frac {b x^{3} e^{i \pi }}{a}} \right )}}{3 a^{\frac {3}{2}} \Gamma \left (\frac {10}{3}\right )} + \frac {e x^{8} \Gamma \left (\frac {8}{3}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {3}{2}, \frac {8}{3} \\ \frac {11}{3} \end {matrix}\middle | {\frac {b x^{3} e^{i \pi }}{a}} \right )}}{3 a^{\frac {3}{2}} \Gamma \left (\frac {11}{3}\right )} \]

[In]

integrate(x**5*(e*x**2+d*x+c)/(b*x**3+a)**(3/2),x)

[Out]

c*Piecewise((4*a/(3*b**2*sqrt(a + b*x**3)) + 2*x**3/(3*b*sqrt(a + b*x**3)), Ne(b, 0)), (x**6/(6*a**(3/2)), Tru
e)) + d*x**7*gamma(7/3)*hyper((3/2, 7/3), (10/3,), b*x**3*exp_polar(I*pi)/a)/(3*a**(3/2)*gamma(10/3)) + e*x**8
*gamma(8/3)*hyper((3/2, 8/3), (11/3,), b*x**3*exp_polar(I*pi)/a)/(3*a**(3/2)*gamma(11/3))

Maxima [F]

\[ \int \frac {x^5 \left (c+d x+e x^2\right )}{\left (a+b x^3\right )^{3/2}} \, dx=\int { \frac {{\left (e x^{2} + d x + c\right )} x^{5}}{{\left (b x^{3} + a\right )}^{\frac {3}{2}}} \,d x } \]

[In]

integrate(x^5*(e*x^2+d*x+c)/(b*x^3+a)^(3/2),x, algorithm="maxima")

[Out]

2/3*c*(sqrt(b*x^3 + a)/b^2 + a/(sqrt(b*x^3 + a)*b^2)) + integrate((e*x^7 + d*x^6)*sqrt(b*x^3 + a)/(b^2*x^6 + 2
*a*b*x^3 + a^2), x)

Giac [F]

\[ \int \frac {x^5 \left (c+d x+e x^2\right )}{\left (a+b x^3\right )^{3/2}} \, dx=\int { \frac {{\left (e x^{2} + d x + c\right )} x^{5}}{{\left (b x^{3} + a\right )}^{\frac {3}{2}}} \,d x } \]

[In]

integrate(x^5*(e*x^2+d*x+c)/(b*x^3+a)^(3/2),x, algorithm="giac")

[Out]

integrate((e*x^2 + d*x + c)*x^5/(b*x^3 + a)^(3/2), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {x^5 \left (c+d x+e x^2\right )}{\left (a+b x^3\right )^{3/2}} \, dx=\int \frac {x^5\,\left (e\,x^2+d\,x+c\right )}{{\left (b\,x^3+a\right )}^{3/2}} \,d x \]

[In]

int((x^5*(c + d*x + e*x^2))/(a + b*x^3)^(3/2),x)

[Out]

int((x^5*(c + d*x + e*x^2))/(a + b*x^3)^(3/2), x)